Hydroponics 3-Mode Adjustable Double Ended CMH 630W Grow Light Fixture with Grow Ballast Custom

Home / Products / Grow Light / Hydroponics 3-Mode Adjustable Double Ended CMH 630W Grow Light Fixture with Grow Ballast
  • str_replace('
  • str_replace('
  • str_replace('
  • str_replace('
  • str_replace('
Hydroponics 3-Mode Adjustable Double Ended CMH 630W Grow Light Fixture with Grow Ballast

Hydroponics 3-Mode Adjustable Double Ended CMH 630W Grow Light Fixture with Grow Ballast

Contact us

  • Details
  • leave a message
  • Support Dimmer

    Yes

    Lighting solutions service

    Project Installation

    Application

    Seed Starting, BLOOM, VEG

    PPFDμmol/(m2·s)

    400-700

    Input Voltage(V)

    120/240V

    Lamp Luminous Flux(lm)

    Aluminum

    Working Temperature(℃)

    75 - 167

    Working Lifetime(Hour)

    10000

    Place of Origin

    Zhejiang, China

    Brand Name

    SUNSHINE

    Model Number

    NT-YD1000R1

    Wattage

    240W, 480W, 220W, 320W, 640W, 1000W, 800w

    Light Source

    HID

    Material

    Aluminum

    Color

    White/sliver

    Dimension

    50*38*22cm

    Packing

    Carton Box

    Logo

    Customized

    Size

    Optional

  • If you want to know us, please contact us!

    We always adheres to the quality policy of "Innovation is infinity, to keep improving",adhering to the enterprise tenet of "Veracity,Customer regarded supreme".

    • Company.
    • E-mail*.
    • Name*.
    • Phone.
    • Message*.
About Sunshine
Since 2011
SUNSHINE GARDEN is leading in manufacturing home garden and hydroponic grow equipment in China with 12 years OEM & ODM experience. We are famous Hydroponics 3-Mode Adjustable Double Ended CMH 630W Grow Light Fixture with Grow Ballast supplier and manufacturer in China. Our main products can be divided into two series, including Hydroponic Grow Equipmentslike Full completed grow tents and kits, Grow tables and trays, Grow bags, Seeding propagation, another series is Home Garden Products like Mini Greenhouses, Hanging planters, Garden waste bags and so on. Custom made Hydroponics 3-Mode Adjustable Double Ended CMH 630W Grow Light Fixture with Grow Ballast to help build your perfect garden and hydroponic grow system.
View More

Factory Tour

Offers everything you need to build complete gardening and hydroponic systems.

News
Comparing Energy Efficiency of CMH Sodium Light to Traditional HPS
Sep 26.2025
Energy efficiency is a critical factor when selecting lighting for horticultural, commercial, and industrial applications. CMH Sodium Light has become a popular alternative to traditional high-pressure sodium (HPS) lamps due to its broad-spectrum output and claimed energy-saving benefits. Understanding how the energy efficiency of CMH lamps compares to conventional HPS lighting is essential for growers and facility managers who aim to reduce operational costs while maintaining suitable plant growth and illumination levels. Luminous Efficiency of CMH Lighting CMH Sodium Light is known for delivering a high level of luminous efficiency, often measured in lumens per watt (lm/W). Its ceramic metal halide technology allows for better conversion of electrical energy into usable light, producing a balanced full spectrum that closely resembles natural sunlight. In contrast, traditional HPS lamps tend to produce light primarily in the yellow and red wavelengths, which, while suitable for flowering and fruiting stages in plants, are less efficient in terms of total light output per watt. This spectral advantage enables CMH lighting to provide more useful light for overall plant growth while consuming similar or lower energy levels. Comparison with High-Pressure Sodium Lamps When comparing CMH Sodium Light to HPS lamps of similar wattage, CMH models often achieve comparable or slightly better energy efficiency. For example, a 315-watt CMH lamp may produce nearly the same light intensity as a 400-watt HPS lamp while consuming less electricity. This translates into lower energy costs over time without sacrificing performance. The broader spectrum also reduces the need for supplemental lighting in some horticultural setups, further enhancing overall energy efficiency. Practical Benefits for Growers The energy-saving benefits of CMH lighting extend beyond just reduced electricity consumption. With improved luminous efficiency, fewer fixtures may be needed to achieve the desired light levels, reducing both equipment costs and heat load. Lower heat generation also decreases the demand for cooling and ventilation systems, which are often significant contributors to operational expenses in indoor growing environments. By replacing HPS lamps with CMH alternatives, growers can achieve similar or better plant growth results while lowering overall energy use and maintenance requirements. Considerations for Optimal Efficiency To maximize the energy efficiency of CMH Sodium Light, proper installation and maintenance are essential. Using compatible ballasts, ensuring correct fixture placement, and maintaining clean reflectors and lamps help maintain suitable light output and efficiency. Additionally, selecting the appropriate lamp wattage for the specific growing area prevents energy wastage and ensures uniform coverage. Environmental factors, such as temperature and humidity, can also influence lamp performance, so proper monitoring and ventilation are important for consistent energy-efficient operation. Long-Term Implications Switching to CMH lighting from HPS can result in both immediate and long-term energy savings. Reduced electricity consumption, lower heat output, and decreased need for supplemental lighting contribute to cost efficiency and sustainability. Over the lifespan of the lamps, the investment in CMH technology can be recouped through reduced energy bills, less frequent lamp replacement, and improved plant productivity. The combination of high luminous efficiency and full-spectrum light makes CMH Sodium Light an attractive choice for energy-conscious growers seeking both performance and cost savings. CMH Sodium Light offers notable energy efficiency advantages compared to traditional high-pressure sodium lamps. Its full-spectrum output, better luminous efficiency, and lower heat generation make it a cost-effective and sustainable choice for horticultural and commercial applications. By using CMH lighting strategically, growers and facility managers can achieve high-quality illumination, reduce energy consumption, and enhance operational efficiency. Understanding these benefits allows for informed decisions when selecting lighting solutions that balance performance, energy use, and long-term sustainability.
How about CMH Sodium Light Performance in Conditions
Sep 19.2025
Lighting systems in horticulture and commercial applications often face challenging conditions, including high temperatures and high humidity. CMH Sodium Light has gained popularity due to its full-spectrum output, energy efficiency, and long lifespan. However, environmental factors such as excessive heat or moisture can influence the stability, performance, and longevity of these lamps. Understanding how these lights behave under conditions is critical for ensuring consistent growth, energy efficiency, and safety. Effects of High Temperature on Lamp Stability High temperatures can impact both the electrical and mechanical components of CMH Sodium Light. The lamp’s arc tube and ceramic components are designed to withstand significant heat, but prolonged exposure to elevated temperatures can accelerate material degradation. Excessive heat can cause thermal expansion of internal components, potentially altering the arc path and reducing light output. Additionally, the ballast or driver connected to the lamp may also experience reduced efficiency and increased stress under sustained high temperatures. Ensuring proper ventilation and heat dissipation is therefore crucial to maintain stable performance. Influence of Humidity and Moisture Moisture is another factor that can affect the operational stability of CMH Sodium Light. High-humidity environments, such as greenhouses or tropical indoor facilities, can cause condensation on lamp surfaces or within fixtures. While the lamps themselves are generally sealed, prolonged exposure to moisture can cause corrosion of metallic contacts and electrical connections, reducing lifespan and reliability. Proper sealing, protective housings, and regular maintenance can mitigate these risks, preserving both light quality and energy efficiency. Impact on Light Output and Efficiency Environmental stressors can also influence the luminous output and spectral consistency of CMH Sodium Light. High temperatures may cause slight color shifts in the emitted light, potentially affecting plant growth if used in horticultural settings. Similarly, moisture-related issues, such as contact corrosion or ballast degradation, can reduce overall light output and stability. These variations highlight the importance of monitoring lamp performance in challenging conditions and implementing preventive measures to ensure consistent lighting. Mitigation Strategies for Extreme Environments Several strategies can enhance the stability of CMH Sodium Light in high-temperature or humid conditions. First, using fixtures with adequate ventilation or active cooling helps dissipate heat and maintain suitable operating temperatures. Second, selecting lamps with high-quality construction, including robust arc tubes and corrosion-resistant connectors, increases tolerance to moisture. Third, incorporating environmental monitoring, such as temperature and humidity sensors, allows facility managers to take proactive measures, preventing lamp failure and ensuring consistent performance. Practical Applications and Considerations Understanding environmental stability is particularly important in commercial horticulture, industrial facilities, and outdoor installations. In these scenarios, consistent light output directly affects plant growth, productivity, and operational efficiency. Choosing CMH Sodium Light models rated for conditions, combined with proper fixture design and maintenance practices, ensures reliable performance. This approach minimizes downtime, reduces replacement costs, and protects investment in lighting infrastructure. CMH Sodium Light demonstrates strong performance in standard conditions but can be affected by high temperatures and high humidity. Thermal stress can impact the arc tube and ballast, while moisture may degrade electrical connections and reduce light output. Implementing proper ventilation, using corrosion-resistant fixtures, and conducting regular maintenance are essential to maintain stability. By understanding and addressing environmental challenges, users can ensure consistent performance, extend lamp lifespan, and optimize efficiency in demanding horticultural and commercial applications.
Evaluating How Power Ratings Influence CMH Sodium Light Efficiency
Sep 12.2025
CMH Sodium Light has become a popular choice in horticulture and commercial lighting due to its full-spectrum output and relative energy efficiency. One key consideration when selecting these lamps is the relationship between power rating and luminous efficiency. Luminous efficiency, often measured in lumens per watt (lm/W), indicates how effectively a light converts electrical energy into visible light. Understanding how different power levels affect performance can help growers, facility managers, and engineers make informed decisions regarding energy use, lighting coverage, and overall system performance. Understanding Luminous Efficiency Luminous efficiency reflects the amount of usable light produced per unit of electrical power consumed. In CMH Sodium Light, efficiency is influenced by both lamp design and operating conditions. Lower-power lamps typically operate at cooler temperatures and may achieve slightly higher efficiency per watt, but they produce less total light, which may not be sufficient for larger cultivation areas or commercial spaces. Conversely, higher-power lamps provide greater total light output, but heat buildup and electrical losses can sometimes reduce overall efficiency on a per-watt basis. Efficiency Differences Across Power Ratings The efficiency of CMH Sodium Light varies depending on wattage. For example, a 315-watt CMH lamp might deliver high lumens per watt in compact spaces, making it suitable for smaller grow tents or confined areas. A 630-watt lamp, while producing double the total lumens, may show slightly lower efficiency per watt due to increased thermal losses and electrical resistance. This does not necessarily mean that higher-power lamps are inefficient; rather, their design balances high total light output with energy consumption, making them ideal for large-scale operations where total coverage is a priority. Impact on Plant Growth and Coverage From a horticultural perspective, choosing the appropriate lamp power affects both plant growth and canopy coverage. Lower-power lamps provide more focused light, ideal for smaller setups or specific plant zones. Higher-power lamps illuminate larger areas and penetrate deeper into the canopy, enhancing overall photosynthesis and growth uniformity. The slight variations in luminous efficiency are generally offset by the benefits of higher light intensity and broader coverage, making power selection a trade-off between energy efficiency per watt and total light output. Practical Considerations for Energy Use When selecting CMH Sodium Light, power, energy costs, and heat management are important considerations. Lower-power lamps consume less electricity, potentially lowering operating costs, but may require multiple fixtures to achieve adequate light levels. Higher-power lamps increase energy use and generate more heat, necessitating proper ventilation and cooling systems. Evaluating luminous efficiency in combination with power requirements ensures suitable performance while maintaining energy and cost efficiency. The luminous efficiency of CMH Sodium Light is influenced by its power rating, with lower-power lamps often achieving slightly higher efficiency per watt and higher-power lamps producing greater total light output. Understanding these differences is essential for balancing energy consumption, light coverage, and plant growth requirements. Selecting the appropriate wattage allows growers and facility managers to optimize lighting performance, maximize plant productivity, and ensure energy-efficient operation. By considering both efficiency and total output, users can make informed decisions tailored to their specific horticultural or commercial lighting needs.
The Role of CMH Sodium Light Spectrum in Plant Development .
Sep 05.2025
Light is one of the crucial factors affecting plant growth and development. The quality, intensity, and spectrum of light determine photosynthesis efficiency, flowering cycles, and overall plant health. Among various horticultural lighting options, CMH Sodium Light has gained attention due to its full-spectrum output and relatively high efficiency. Understanding how the spectral distribution of this type of light affects different stages of plant growth is essential for optimizing yields and maintaining healthy vegetation. Full-Spectrum Lighting Benefits CMH Sodium Light is designed to provide a broad spectrum of light that closely resembles natural sunlight. Unlike traditional high-pressure sodium lamps, which emit primarily in the yellow and red regions, CMH lamps deliver significant blue, red, and green wavelengths. Blue light is particularly important for vegetative growth, influencing leaf development, compactness, and stem strength. Red light, on the other hand, plays a critical role in promoting flowering, fruiting, and overall biomass production. The balanced spectral output ensures that plants receive the right combination of wavelengths throughout their life cycle, promoting consistent growth and higher yields. Effects on Photosynthesis The efficiency of photosynthesis is directly related to the wavelengths of light absorbed by chlorophyll and other pigments. CMH Sodium Light’s spectrum includes strong peaks in both the blue (400–500 nm) and red (600–700 nm) regions, which correspond to the absorption maxima of chlorophyll a and b. By delivering energy in these suitable wavelengths, the lamp enhances photosynthetic activity, causing faster growth and healthier plants. Additionally, the inclusion of green wavelengths allows light to penetrate deeper into the plant canopy, improving overall light utilization and ensuring that lower leaves receive sufficient energy for growth. Influence on Plant Morphology The spectral composition of light also affects plant morphology. Blue light promotes compact growth with shorter internodes and thicker leaves, making plants more robust and better suited for indoor cultivation. Red light, especially when paired with far-red wavelengths, encourages flowering and fruit development. By adjusting the proportion of blue and red light within CMH Sodium Light setups, growers can manipulate plant form and function to suit specific cultivation goals. For example, higher blue ratios can be used during vegetative stages, while red dominance can be emphasized during flowering phases. Practical Implications for Cultivation For commercial growers, understanding the spectral benefits of CMH Sodium Light helps optimize both plant quality and energy efficiency. Its full-spectrum output reduces the need for supplemental lighting, allowing for a more straightforward setup compared to combining multiple light sources. The lamp’s consistent color temperature and spectral balance also minimize stress on plants, which can improve disease resistance and reduce the likelihood of nutrient deficiencies. When paired with appropriate photoperiods, CMH lighting can significantly enhance growth cycles, resulting in faster production and higher yields. The spectral distribution of CMH Sodium Light plays a fundamental role in supporting plant growth from vegetative stages to flowering and fruiting. Its full-spectrum output, with strong contributions in both blue and red wavelengths, enhances photosynthesis, influences plant morphology, and improves overall cultivation efficiency. By leveraging the benefits of this lighting technology, growers can achieve healthier, more productive plants while maintaining energy-efficient and effective horticultural systems. Understanding the impact of the light spectrum is essential for optimizing plant development and achieving desired agricultural outcomes